public:math:mathematical_analysis:chapter_3

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
public:math:mathematical_analysis:chapter_3 [2024/06/05 22:57] – [2. 数列极限的性质] oakfirepublic:math:mathematical_analysis:chapter_3 [2024/06/18 22:11] (当前版本) – [3. 数列极限的存在问题] oakfire
行 26: 行 26:
     * c) \( \lim\limits_{n \to \infty}\dfrac{x_n}{y_n} = \dfrac{A}{B} \), 如果 \( y_n \ne 0(n=1,2\cdots) \land B \ne 0 \).     * c) \( \lim\limits_{n \to \infty}\dfrac{x_n}{y_n} = \dfrac{A}{B} \), 如果 \( y_n \ne 0(n=1,2\cdots) \land B \ne 0 \).
   * **定理 3**: a) 设 \( \{x_n\}, \{y_n\} \) 是两个收敛数列,且 \( \lim\limits_{n \to \infty} x_n = A, \lim\limits_{n \to \infty} y_n = B \). 如果 \( A < B \), 就存在 \( N \in \mathbb{N} \),使得对于任何 \( n > N \), 不等式 \( x_n < y_n \) 成立.   * **定理 3**: a) 设 \( \{x_n\}, \{y_n\} \) 是两个收敛数列,且 \( \lim\limits_{n \to \infty} x_n = A, \lim\limits_{n \to \infty} y_n = B \). 如果 \( A < B \), 就存在 \( N \in \mathbb{N} \),使得对于任何 \( n > N \), 不等式 \( x_n < y_n \) 成立.
-    * b) 设 \( \{x_n\}, \{y_n\} , \{z_n\} \) 是这样三个数列: 当 \( n > N \in \mathbb{N} \) 时, \( x_n \leq y_n \leq z_n\). 如果 \( \{ x_n \} \) 与 \( \{ z_n \} \) 收敛于同一极限,那么数列 \( \{y_n\}\) 也收敛于这个极限.+    * b) 设 \( \{x_n\}, \{y_n\} , \{z_n\} \) 是这样三个数列: 当 \( n > N \in \mathbb{N} \) 时, \( x_n \leqslant y_n \leqslant z_n\). 如果 \( \{ x_n \} \) 与 \( \{ z_n \} \) 收敛于同一极限,那么数列 \( \{y_n\}\) 也收敛于这个极限.
  
 ==== 3. 数列极限的存在问题 ==== ==== 3. 数列极限的存在问题 ====
- +  * **定义 7**:  满足 \( \forall \varepsilon> 0 \; \exists N \in \mathbb{N} \; \forall n > N \; \forall m > N (|x_m - x_n| < \varepsilon)\) 的 数列 \(\{x_n\}\) 叫做 **基本列** 或 **柯西列** 
- +  * **定理 4 (数列收敛的柯西准则)**: 数列收敛的充要条件是它是基本列 
 +    * 证明不是基本列的否命题是:\(\exists \varepsilon > 0, \forall N \in \mathbb{N} \; \exists n > N,\exists m > N(|x_m - x_n| \geqslant \varepsilon \) 
 +  * **定义 8**: 设数列 \( \{x_n\} \), **递增列**:满足 \(\forall n \in \mathbb{N}(x_n < x_{n+1})\) 
 +    * **不降列**: 满足 \(\forall n \in \mathbb{N}(x_n \leqslant x_{n+1})\) 
 +    * **不增列**: 满足 \(\forall n \in \mathbb{N}(x_n \geqslant x_{n+1})\) 
 +    * **递降列**: 满足 \(\forall n \in \mathbb{N}(x_n > x_{n+1})\) 
 +    * 以上四种都称之为 **单调数列** 
 +  * **定义 9**: **上有界列**: 满足 \(\exists M,\forall n \in \mathbb{N}(x_n < M) \); 类似可定义 **下有界列** 
 +  * **定理 5(魏尔斯特拉斯)**: 不降数列有极限的充要条件是它上有界 
 +    * 例11: 当 \(q > 1\) 时, \( \lim\limits_{n \to \infty} \dfrac{n}{q^n} = 0 \). 
 +    * 推论1:\( \lim\limits_{n \to \infty} \sqrt[n]{n} = 1 \) 
 +    * 推论2:\( \forall a > 0, \lim\limits_{n \to \infty} \sqrt[n]{a} = 1 \) 
 +    * 例12: \( \forall q \in \mathbb{R}, \lim\limits_{n \to \infty} \dfrac{q^n}{n!} = 0 \), 其中 \( n \in \mathbb{N}, n! := 1 \cdot 2 \cdot \cdots \cdot n  \). 
 +  * **伯努利不等式**:\( (1 + \alpha)^n \geqslant 1 + n\alpha \), 其中 \( n \in \mathbb{N}, \alpha > -1 \) 
 +  * **定义10:自然常数 \(e\) **:  \[ e := \lim_{n \to \infty} \Bigl(1 + \frac{1}{n}\Bigr)^n \]
 FIXME FIXME
  • public/math/mathematical_analysis/chapter_3.1717599437.txt.gz
  • 最后更改: 2024/06/05 22:57
  • oakfire